Fast escaping points of entire functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Escaping Points of Entire Functions of Small Growth

Abstract. Let f be a transcendental entire function and let I(f) denote the set of points that escape to infinity under iteration. We give conditions which ensure that, for certain functions, I(f) is connected. In particular, we show that I(f) is connected if f has order zero and sufficiently small growth or has order less than 1/2 and regular growth. This shows that, for these functions, Ereme...

متن کامل

Maximally and non-maximally fast escaping points of transcendental entire functions

We partition the fast escaping set of a transcendental entire function into two subsets, the maximally fast escaping set and the non-maximally fast escaping set. These sets are shown to have strong dynamical properties. We show that the intersection of the Julia set with the non-maximally fast escaping set is never empty. The proof uses a new covering result for annuli, which is of wider intere...

متن کامل

Slow Escaping Points of Meromorphic Functions

We show that for any transcendental meromorphic function f there is a point z in the Julia set of f such that the iterates fn(z) escape, that is, tend to ∞, arbitrarily slowly. The proof uses new covering results for analytic functions. We also introduce several slow escaping sets, in each of which fn(z) tends to ∞ at a bounded rate, and establish the connections between these sets and the Juli...

متن کامل

Hausdorff Dimensions of Escaping Sets of Transcendental Entire Functions

Let f and g be transcendental entire functions, each with a bounded set of singular values, and suppose that g ◦ φ = ψ ◦ f , where φ, ψ : C → C are affine. We show that the escaping sets of f and g have the same Hausdorff dimension. Using a result of the second author, we deduce that there exists a family of transcendental entire functions for which the escaping set has Hausdorff dimension equa...

متن کامل

Rigidity of Escaping Dynamics for Transcendental Entire Functions

We prove an analog of Böttcher’s theorem for transcendental entire functions in the Eremenko-Lyubich class B. More precisely, let f and g be entire functions with bounded sets of singular values and suppose that f and g belong to the same parameter space (i.e., are quasiconformally equivalent in the sense of Eremenko and Lyubich). Then f and g are conjugate when restricted to the set of points ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the London Mathematical Society

سال: 2012

ISSN: 0024-6115

DOI: 10.1112/plms/pds001